在下面的证明中, 我们全程用到了下面的简单结论:
命题:若$\lbrace a_n\rbrace$是有界数列, $\lbrace b_n\rbrace$是收敛于0的数列, 则
\[\lim\limits_{n\to\infty}a_nb_n=0.\]
这个命题用$\varepsilon-N$语言很容易证明.
$\lbrace \sin n^2\rbrace$发散的证明
我们用反证法来证明$\lbrace \sin n^2\rbrace$是发散数列.
假设$\left\lbrace\sin(n^2)\right\rbrace$收敛, 记$\lim\limits_{n\to \infty}\sin(n^2)=a$. 我们把证明分成两部分.
Step 1: 先证明$a=0$.
由$\lim\limits_{n\to \infty}\sin(n^2)=a$可得
\[\lim\limits_{n\to \infty}\sin(n^2)=\lim\limits_{n\to \infty}\sin(n+i)^2\triangleq a\in\mathbb{R}, \qquad i\in\{-2,-1,1,2\}.\]利用和差化积以及极限的四则运算性质,可得
\[\begin{aligned} &\lim\limits_{n\to \infty}\cos(n^2+1)\sin(2n)=0, && (1)\\ &\lim\limits_{n\to \infty}\cos(n^2+4)\sin(4n)=0. && (2) \end{aligned}\]又
\[\begin{aligned} \cos(n^2+4)\sin(4n)&=2(\cos(n^2+1)\sin(2n))\cos(2n)\cos{3} \\ &\qquad -2(\sin(n^2+1)\cos(2n))\sin(2n)\sin{3}, \end{aligned}\]令$n\to \infty$, 则根据$(1)(2)$可知
\[\lim\limits_{n\to \infty}a\sin(2n)=0.\]若$a\neq 0$, 则 $\lim\limits_{n\to \infty}\sin(2n)=0. $ 又
\[\sin{4}=\sin(2n+2)\cos(2n-2)-\cos(2n+2)\sin(2n-2),\]令$n\to \infty$, 则$\sin{4}=0$, 矛盾,故$a=0$, 即
\[\lim\limits_{n\to \infty}\sin(n^2)=0.\]Step 2: 导出矛盾.
由$(n+1)^2+(n-1)^2-2n^2=2$知,
\[\begin{aligned} \sin{2}&=\sin\Big[(n+1)^2+(n-1)^2-2n^2\Big] \\ &=\sin\Big[(n+1)^2+(n-1)^2\Big]\cos(2n^2)-\cos\Big[(n+1)^2+(n-1)^2\Big]\sin(2n^2) \\ &=\Big[\sin(n+1)^2\cos(n-1)^2+\sin(n-1)^2\cos(n+1)^2\Big]\cos(2n^2) \\ &\qquad -2\cos\Big[(n+1)^2+(n-1)^2\Big]\cos(n^2)\sin(n^2) \\ &=A_n\sin(n+1)^2+B_n\sin(n-1)^2+C_n\sin(n^2), \end{aligned}\]其中$A_n,\;B_n,\;C_n$有界,
\[\begin{aligned} A_n&=\cos(n-1)^2\cos(2n^2), \\ B_n&=\cos(n+1)^2\cos(2n^2), \\ C_n&=-2\cos\Big[(n+1)^2+(n-1)^2\Big]\cos(n^2). \end{aligned}\]令$n\to \infty$, 则$\sin{2}=0$, 矛盾. $\square$